Üretken yapay zekanın yeni manzarası: açık kaynak - Dünyadan Güncel Teknoloji Haberleri

Üretken yapay zekanın yeni manzarası: açık kaynak - Dünyadan Güncel Teknoloji Haberleri
Kararlılık Yapay Zekası Veya Veri tuğlaları Peki açık kaynaklı modellerin sahip olabileceği avantajlar nelerdir?

İlk avantaj, dağıtım seçenekleri üzerinde neredeyse tam kontrol sağlayan açıkça özelleştirmedir

Açık kaynak, bugün GPT’nin trilyonlarca parametresiyle rekabet edemez (çünkü bu modelleri üretmek için bilgi işlem enerjisini finanse etmek gereklidir), genellikle “gerekli olanın” nasıl kullanılacağı açıklanmadan ona karşı ilk verilen argümandır Dolayısıyla bu göz ardı edilebilecek bir avantaj değil ve bu nedenle, her şeye ihtiyacı olan kişileri sunucularında “evde kalmaya” ikna etmek için açık kaynak teklifi hızla gelişiyor Kendisine indirdiğimiz bir çizimi görebiliyor ve anında oluşturduğu bir görüntüyle bize vizyonunu aktarabiliyor

Microsoftkısmen finanse eden OpenAI ChatGPT kullanımıyla ortaya çıkabilecek olası hukuki başvurulara karşı müşterilerini koruyacağını duyurdu Bu nedenle, şirketleri kitlenin söylendiğine inandıran, hatta rehinelerini (Bulutlarını terk edemeyen CIO’ları) ikna etmeyi başaran bazı (Bulut) satıcıların pazarlama söylemlerinden kaçınalım Bu, Bulut+Yüksek Lisans Modeli kombinasyonunu düşündüğümüzde tek bir veya iki sağlayıcıya olan bağımlılığın açıkça azalmasıdır Kanınızla şeytana imza atmadan önce, çünkü Orta Çağ’da üretken yapay zeka hakkında böyle düşünürdük, seçiminizin avantajlarını ve faydalarını düşünmek için beş dakikanız var mı?

BT’nin farklı alanlarında açık kaynak her zaman aynı rolü oynamaz İşletmenin merkezinde yer alan umut verici kullanım senaryoları belirlendikten sonra, sanayileşmeyi açık kaynak modelleriyle ve şirket içi becerilerin geliştirilmesiyle inceleyin

Bu nedenle açık kaynak modelleri, şirket içi başarılara uyarlanmış, şirketin yayınlanmasını istemediği verileri işleyen ve aşırı miktarda BT kaynağı (ve dolayısıyla maliyet) kullanmadan bir oyun alanı sunar Bulut Yasası ve ulusal egemenlik göz önüne alındığında, bir Bulut satıcısından gelen özel bir Bulut bile “her yerde” olabilir Sıklıkla altyapılarla bağlantılı olan diğer alanlarda, öncülük yapar ve dağıtımların çoğuna hakim olur ve bir standart haline gelir Bu bir güvenin kabulü mü, yoksa güvensizliğin tam tersi, yani riskin var olduğu ancak “sigortalı” olduğu anlamına mı geliyor? Dikkatle takip edeceğiz”sınıf eylemi” Amerikalı bağımsız yayıncılar tarafından ChatGPT’ye karşı dava açıldı, çünkü onlar kazanırsa ve siz de ChatGPT’yi roman benzeri metinler oluşturmak için kullanırsanız, sıradaki siz olabilirsiniz… Microsoft’un kalkanının hemen arkasında, eğer direnirse 😉

Açık kaynak için üçüncü argüman, geliştirmenin işbirlikçi olduğu gerçeğidir Öyleyse GPT-3

OpenAIve bu yüzden GPT, açık kaynak olarak doğdu, daha sonra özel mülkiyete geçti

İçin YeşilSIişletme maliyetleri, çözülecek soruna bağlı olarak doğru parametrelerle doğru LLM’yi seçme yolunda çok hızlı bir şekilde ilerleyeceğimiz anlamına gelecektir Üretken yapay zeka, yazılımı güçlü bir şekilde etkilediği gibi, dijital hale gelen şirketlerin yapısını ve organizasyonunu da etkiliyor

Genellikle akademi ve uluslararası değişimlerle bağlantılı olan ve hayatını özel uygulamalardan bağımsız olarak yaşadığı alanlar vardır Bu tek değil !

Açık kaynağı tercih etmenizin nedeni, yatırım yapmadan kullanım için ödeme yapmak yerine bunu tek başınıza, yatırımlarla yapabilmenizdir Son olarak, açık kaynağın tescilli tekliflerle rekabete girdiği alanlar, aynı özelliklere sahip olmayan ve uygulamalara bağlı olarak her birinin şirketlerin veya kamu hizmeti oyuncularının ilgisini çektiği iki iş modeli vardır Bu nedenle AI zaten açık kaynak lisanslarını değiştirdi!

Beklenen bir diğer gelişme, lisansın kabul edilmesiyle, LLM’lerin yaşam döngüsünün izlenmesi ve öğrenme maliyetlerinin bir havuzda toplanması için gerekli olan kullanıcı geri bildirimlerinin paylaşılması zorunluluğunun getirilmesi olacaktır YeşilSI Bu modele karşı hiçbir yanımız yok, sonuçta İnternet araştırmalarını çevrimiçi reklamcılık yoluyla finanse ettik, ancak bunun pek de erdemli bir mekanizma olmadığının farkında olalım not etmek sorumlu yapay zeka lisansı (RAIL), açık erişim lisanslama yaklaşımını, sorumlu yapay zeka vizyonunu güçlendirmeyi amaçlayan davranışsal kısıtlamalarla birleştiren yeni bir telif hakkı lisansıdır Bugün lisanslamada bu bir kör nokta ama bu yönde taleplerin geldiğini görüyoruz Stanford Üniversitesigibi kar amacı gütmeyen araştırma laboratuvarlarında EleutherAIve elbette Meta veya Google gibi Gafa’dakilerde Herkes özel bir alternatifin var olup olmadığına bakmadan bunu kullanıyor Fransızca olarak alıntı yapabiliriz Mistral 7B Yelkenlerinde rüzgar olan ve iyi performanslar sergileyen ve bunlarla karşılaştırılan ClaudeGreenSI’nin daha önce bahsettiği ancak sahibinin seçimini yaptığı bu da daha fazla gizlilik ve güvenlik sağlayabilir Birçok araştırma start-up’ı tarafından istismar ediliyorlar

Bu modeller, aynı üniversitede geliştirilenler gibi “sağlam” araştırmalarla oluşturulmuştur Örneğin GPT-4’ün nasıl eğitildiğini, eğitim veri setlerinin ne olduğunu, nasıl iyileştirildiğini vb Aynı zamanda multimedya haline geliyor ve bir insanın yapacağı gibi tepkisini kişiselleştirmek için verilerimizi entegre ediyor Çünkü yüksek lisansların iş dünyasında kullanılabilmesi için jenerik modellerin daha etkili olabilmesi için şirket verileriyle zenginleştirilmesi gerekiyor fiilen Github için Microsoft veya Java için Oracle gibi milyarlarca dolar harcayan şirketlerin hiçbir büyük açık kaynak satın alımı daha sonra piyasada bu kadar büyük bir etki yaratmadı

ChatGPT ile ilgili ilk deneylerden sonra açık kaynaklı bir motora geçmenin daha ilginç olup olmadığı sorusu gerçekten stratejik bir sorudur Ancak 4, 3,5’tan fazla mıdır? Hayır, bu pazarlama! Hangi sorundan bahsettiğimize bağlı Bu nedenle bu verileri iyi korumak ve ortalıkta bırakmamak gerekecektir



genel-15

Üç banknot YeşilSI bu değişiklikleri araştırdık aktörlerTHE kullanır ve hatta kesinlikle üretmenin yolu kodlanmış

İnsan ve makine arasındaki ilişkide temel varsayımlar değişiyor; HMI (insan makine arayüzü) buzdağının sadece görünen kısmıdır bu dönüşümün

Öte yandan, aktörlere ilişkin paylaşımda da görüldüğü gibi, bir ekonominin temel ekonomik modeli Microsoft örneğin size Azure Bulutu satmaktır

Şimdi açık olalım, bugün açık kaynak modellerinin sınırları var, bu, açık kaynağın şu anda geliştirilmekte olan üretken yapay zekanın gelecekteki işletim modelinde yerini alma yeteneğini hiçbir şekilde ortadan kaldırmasa bile Ve ne kadar çok satın alırsanız, modeli o kadar karlı olur

Çünkü adından da anlaşılabileceği gibi GPT-4, GPT-3 Bu yeni yazı, ortaya çıkan bu araçların önemli bir boyutunu, bunların açık kaynak veya tescilli model 0 ve MIT gibi izin verilen lisanslar, kullanıcıların yazılımı minimum düzeyde kısıtlamalarla kullanmasına, değiştirmesine ve dağıtmasına olanak tanır Bunun nedeni genellikle birkaç iyi perinin bu gelişmelere büyük katkıda bulunarak kalkınma modelini etkilemesi ve finanse etmesidir nasıl kullandıklarına veya nasıl dağıttıklarına bağlıdır Tescilli bir model söz konusu olduğunda, bu konu da mevcuttur ve sihirle çözülmez, ancak tedarikçinizin (parasını ödediğiniz) becerileri ve kaynakları harekete geçirilir… ve bu nedenle taahhütte bulunmadan önce kontrol edilmesi gerekir Bu, tüm bilgisayar bilimi okullarının ve Cornell Üniversitesi’nin bu yaz yayınlanan araştırmalarının en büyük konusu ve Ekim başında güncellendi (her şey hızla ilerliyor!) farklı modellerin ilgisini gösteren karşılaştırmalar Kişi onu indirebilir, kurabilir, kodunu okuyabilir ve kendi sunucularında kullanarak uygulamalar geliştirebilir

MetaEn küçük oyunculardan biri olmayan LLM’yi (Llama 2) açık kaynak olarak başlattı Daha hızlı hareket edebiliriz ve her şeyden önce tek bir aktörün yol haritasına bağlı kalmayız Her halükarda Çinlilerin kendilerine güveni olmazdı 😉

İkinci argüman genel olarak açık kaynaktır: kod açıktır ve model şeffaftır bilmiyoruz 5 yeterli olduğunda neden bulut sağlayıcınızdan daha fazla kaynak satın alasınız ki?

Şimdi konunun özünü, pazarlama düşüncesine meydan okuyan açık kaynak perspektifinden inceleyelim; yalnızca özel bir bulut altyapısı üzerindeki özel bir model, yapay zekayı benimseyen bir işletmeyi dönüştürebilir Genel olarak rekabet yeniliğe yol açar Bu nedenle, bu kısa ilk yılın ardından üretken yapay zekaya yönelik geliştirme modeli uzun vadede henüz oluşturulmadı Ancak diğer birçok model açık kaynakta doğdu ve öyle kaldı Ancak grafikteki tüm modellerden daha iyi performans gösteren GPT-4, aynı zamanda çok daha fazla parametre kullanıyor ve bu nedenle hem eğitilmek hem de çalışmak için çok daha fazla enerji tüketiyor Ve açık kaynak teklifi, sadece bir sineği ezmek istediğinizde stokta sadece buharlı silindirler bulundurmaz Ama ne YeşilSI bu modeller için not şu ki Apache 2 Temel olarak yeniden kullanabilirsiniz ancak hiçbir şey yapamazsınız

İlk sınırlama belki de modellerin yaşam döngüsünün yönetimidir ve bu sizin sorumluluğunuzda olduğundan daha karmaşık olacaktır


YeşilSI 2022’nin sonunda üretken yapay zekanın gelişiyle BT ortamının bazen yüzeysel, bazen derinlemesine yeniden şekillendiğine inanıyor Dijitalle birlikte her firmanın bir yazılım yayıncısı haline geldiği söyleniyor Tescilli Yüksek Lisans’ların opaklığının özgüllüğünü bu argümana dahil edebiliriz Birden fazla açık kaynaklı LLM modeli mevcuttur ve tek yapmanız gereken özel Github sayfası yirmiden fazla ciddi adayla kendinizi ikna etmek Meta, Salesforce, MPT veya GPT-J gibi modellerin çoğu bunu iyi anlamış ve benimsemiştir Denetlenebilir, bu da kullanımına olan güveni ve uygun olduğu durumlarda uygulamaya geçebilecek gelecekteki düzenleyici çerçeveyi doğrulama yeteneğini güçlendirir Kaynakların aşırı tüketimini teşvik eder Piyasaya sürülmesinden bir yıl sonra, ChatGPT ile iPhone’da doğal bir şekilde sohbet edebiliyoruz

Yüksek Lisans’larla birlikte aniden üniversite modelinden, standart modelin devasa finansman yöntemleriyle rekabetçi modele geçtik

Çünkü modeller arasındaki karşılaştırmanın ötesinde, model testlerinin sapmaları önlemek için otomatikleştirilmesi ve yaşam döngüleri boyunca düzgün bir şekilde yönetilmesi gerekecektir

Son olarak, herhangi bir açık kaynak kullanımında olduğu gibi lisans seçimi ve istenilen kullanım amacına uygunluğu da önemli bir sorudur Sadece ilk seferin hayret verici etkisini değil, bu yeni kullanımlara yapılan yatırımların karlılığını da arıyorsak, YeşilSI açık kaynağın Bulut kaynaklarının satışına dayalı ekonomik modelden çok daha hızlı bir şekilde daha karlı olacağına inanıyor

Bu nedenle şu anda doğru kombinasyon kesinlikle çok az yatırım ve kullanım başına ödeme ile özel modellerle test etmektir 5’ten daha iyi değil
Bu nedenle, bunları bir yapay zeka stratejisine entegre etmek için bakmamız gereken şey, bu sınırların zayıflatılma hızıdır